Editorial: Plant Silicon Interactions between Organisms and the Implications for Ecosystems
نویسندگان
چکیده
Silicon (Si) is a beneficial, if not essential, plant nutrient (Epstein, 1994). As the second most abundant element in the Earth’s crust it has a global cycling budget similar to that of carbon (Conley, 2002). Some ecological roles of Si are characterized (Cooke and Leishman, 2011), but recent technological advances mean unprecedented understanding of functions at multiple scales, and recognition of its importance to global biogeochemical cycling and food security. We present eight original research papers and an opinion article highlighting the novelty and diversity of recent research. New methods, fresh approaches in both applied and fundamental Si research, innovative herbivore defense experiments, ecosystem-scale field measurements, and Si changes under climate change are investigated. The diversity of topics reveals the complexity of plant responses in terms of Si accumulation, distribution, and function, which are contingent on genotype, biotic interactions, and environmental conditions. High Si-accumulating plant species and families (especially Poaceae) have dominated Si research, including many articles in this research topic. Katz remind us that aside from Poaceae and economically important families such as Fabaceae and Cucurbitaceae, Si has functional roles in low Si-accumulating species. Katz argued that inter-familial variation among taxa is evidence of an ecologically important trait, and that research on low accumulators is likely to facilitate greater understanding of plant Si function. Regardless of species, efficient methods for quantifying Si concentrations in plants are required. Smis et al. described a new approach to determine Si concentrations using near infrared reflectance spectroscopy (NIRS). They developed calibrations for predicting Si concentrations across diverse plant groups, with improved accuracy whenmodels were restricted to a single species or family. The advantages of NIRS are that it is non-destructive, fast, and cheap, but it relies on robust calibrations from traditional laboratory analyses, such as X-Ray Fluorescence (Reidinger et al., 2012). Further work is required to standardize and improve techniques, but cost and time-effective procedures such as NIRS will surely facilitate ecological advances. Silicon is added artificially in agriculture to reduce stress and improve production (Ma, 2004; Reynolds et al., 2009), which should be optimized and integrated into management. Keeping et al. examined impacts of Si, N, and water stress on two pests which reduce worldwide sugarcane production. Si addition significantly reduced borer damage, but did not impact the abundance published: 15 July 2016
منابع مشابه
Ecosystem Patterns and Processes
Ecosystems are complex entities composed of diverse organisms expressing a myriad of life histories, body sizes, and metabolic pathways embedded in a dynamic physical and chemical environment. A suite of internal processes create an intricate web of relationships that control the flow of energy and materials within and between ecosystems. Contributing to the complex nature of ecosystems is the ...
متن کاملEmbracing Variability in the Application of Plant–Soil Interactions to the Restoration of Communities and Ecosystems
Plant–soil interactions are the foundation of effective and sustained restoration of terrestrial communities and ecosystems. Recent advances in ecological science have greatly contributed to our understanding of the effects of soil conditions on plant community dynamics and our understanding of plant composition impacts on almost every aspect of soil structure and function. Although these theor...
متن کاملEditorial: Transport in Plant Microbe Interactions
Plant–microbe interactions are omnipresent in terrestrial ecosystems and central to understand processes of individual growth, community assembly, and biogeochemical cycling. Plants and microbes interact above and below ground, and such interactions could theoretically include all combinations of positive (i.e., mycorrhizal and legume-rhizobia), negative (i.e., pathogenic interactions), or neut...
متن کاملLong-distance interactions regulate the structure and resilience of coastal ecosystems.
Mounting evidence indicates that spatial interactions are important in structuring coastal ecosystems. Until recently, however, most of this work has been focused on seemingly exceptional systems that are characterized by regular, self-organized patterns. In this review, we document that interactions that operate at long distances, beyond the direct neighborhood of individual organisms, are mor...
متن کاملEditorial: Biotrophic Plant-Microbe Interactions
Organisms inhabit the biosphere not as isolated entities: they interact with others. These may be individuals of the same species. In fact, the most common interactions are likely to be with very different beings. The interactions may be fleeting, or life-long, they may be simply sharing the same space, or may be complex behavioral and developmental processes (Buxa et al.; Genre and Russo) from...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2016